Families of polytopal digraphs that do not satisfy the shelling property
نویسندگان
چکیده
A polytopal digraph G(P ) is an orientation of the skeleton of a convex polytope P . The possible non-degenerate pivot operations of the simplex method in solving a linear program over P can be represented as a special polytopal digraph known as an LP digraph. Presently there is no general characterization of which polytopal digraphs are LP digraphs, although four necessary properties are known: acyclicity, unique sink orientation(USO), the Holt-Klee property and the shelling property. The shelling property was introduced by Avis and Moriyama (2009), where two examples are given in d = 4 dimensions of polytopal digraphs satisfying the first three properties but not the shelling property. The smaller of these examples has n = 7 vertices. Avis, Miyata and Moriyama(2009) constructed for each d ≥ 4 and n ≥ d+2, a d-polytope P with n vertices which has a polytopal digraph which is an acyclic USO that satisfies the Holt-Klee property, but does not satisfy the shelling property. The construction was based on a minimal such example, which has d = 4 and n = 6. In this paper we explore the shelling condition further. First we give an apparently stronger definition of the shelling property, which we then prove is equivalent to the original definition. Using this stronger condition we are able to give a more general construction of such families. In particular, we show that given any 4-dimensional polytope P with n0 vertices whose unique sink is simple, we can extend P for any d ≥ 4 and n ≥ n0 + d − 4 to a d-polytope with these properties that has n vertices. Finally we investigate the strength of the shelling condition for Research is supported by NSERC, FQRNT and KAKENHI. Research is supported by KAKENHI.
منابع مشابه
A family of polytopal digraphs that do not satisfy the shelling property
A polytopal digraph G(P ) is an orientation of the skeleton of a convex polytope P . The possible non-degenerate pivot operations of the simplex method in solving a linear program over P can be represented as a special polytopal digraph known as an LP digraph. Presently there is no general characterization of which polytopal digraphs are LP digraphs, although four necessary properties are known...
متن کاملPolytopality and Cartesian products of graphs
We study the question of polytopality of graphs: when is a given graph the graph of a polytope? We first review the known necessary conditions for a graph to be polytopal, and we present three families of graphs which satisfy all these conditions, but which nonetheless are not graphs of polytopes. Our main contribution concerns the polytopality of Cartesian products of non-polytopal graphs. On ...
متن کاملThe forbidden minor characterization of line-search antimatroids of rooted digraphs
An antimatroid is an accessible union-closed family of subsets of a 0nite set. A number of classes of antimatroids are closed under taking minors such as point-search antimatroids of rooted (di)graphs, line-search antimatroids of rooted (di)graphs, shelling antimatroids of rooted trees, shelling antimatroids of posets, etc. The forbidden minor characterizations are known for point-search antima...
متن کاملCooperative Benefit and Cost Games under Fairness Concerns
Solution concepts in cooperative games are based on either cost games or benefit games. Although cost games and benefit games are strategically equivalent, that is not the case in general for solution concepts. Motivated by this important observation, a new property called invariance property with respect to benefit/cost allocation is introduced in this paper. Since such a property can be regar...
متن کاملSome new families of definite polynomials and the composition conjectures
The planar polynomial vector fields with a center at the origin can be written as an scalar differential equation, for example Abel equation. If the coefficients of an Abel equation satisfy the composition condition, then the Abel equation has a center at the origin. Also the composition condition is sufficient for vanishing the first order moments of the coefficients. The composition conjectur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comput. Geom.
دوره 46 شماره
صفحات -
تاریخ انتشار 2013